
61A Bot Report: AI Assistants in CS1 Save Students Homework
Time and Reduce Demands on Staff. (NowWhat?)

J.D. Zamfirescu-Pereira Laryn Qi
Björn Hartmann John DeNero Narges Norouzi

{zamfi,larynqi,bjoern,denero,norouzi}@berkeley.edu
UC Berkeley EECS
Berkeley, CA, USA

Abstract
Chatbot interfaces for LLMs enable students to get immediate, in-
teractive help on homework assignments, but even a thoughtfully-
designed bot may not serve all pedagogical goals. In this paper,
we report on the development and deployment of a GPT-4-based
interactive homework assistant (“61A Bot”) for students in a large
CS1 course; over 2000 students made over 100,000 requests of our
bot across two semesters. Our assistant offers one-shot, contextual
feedback, primarily through a low-friction “get feedback” prompt
within the command-line “autograder” our students already run to
test their code. Our Bot wraps student code in a custom prompt that
supports our pedagogical goals and avoids providing solutions di-
rectly. We discuss our deployment and then analyze the impacts of
our Bot on students, primarily through student-reported feedback
and tracking of student homework progress. We find reductions
in homework-related question rates in our course forum, as well
as substantial reductions in homework completion time when our
Bot is available. For students in the 50𝑡ℎ − 80𝑡ℎ percentile, these
reductions typically exceed 30 minutes per assignment, over 4 stan-
dard deviations faster than the mean in prior semesters. Finally,
we conclude with a discussion of these observations, the potential
impacts on student learning, as well as other potential costs and
benefits of AI assistance in CS1.

CCS Concepts
• Social and professional topics → CS1; • Applied computing
→ Computer-assisted instruction.

Keywords
Automated Tutors, Large Language Models, AI Assistant Deploy-
ment, AI Assistant Evaluation

1 Introduction
The recent wide availability of Large Language Models (LLMs) has
given students in introductory Computer Science (CS) courses a
tempting alternative to asking a human TA for help on program-
ming assignments—and potentially waiting hours to receive it. How-
ever, while naively used LLMs do help students solve assigned prob-
lems, they typically do so by providing correct answers along with
explanations, allowing students to avoid the process of developing
solutions themselves and the learning associated with this process.

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

A number of recent reports [8, 10, 12, 13, 15, 18, 36] present more
thoughtful approaches: new systems, also based on LLMs, geared
towards offering guidance and assistance without providing direct
solutions.

Both students and instructors are reported to find these sys-
tems helpful [15, 18]. Recent studies of deployed LLM-based assis-
tants have included analyses of what affordances are most appre-
ciated and what kinds of functionality students are most likely to
use [9, 15]; how to effectively design systems with guardrails to
reduce instances of solution-sharing [18]; and what kinds of error
messages are most correlated with reductions in error rates [36].
There is a growing interest in understanding the landscape of these
new systems and their impacts on students learning computer sci-
ence [29]—but while much is known about how these systems are
designed and what seems to work well, comparatively less has been
reported on how these systems impact specific courses.

In this experience report, we first present our own assistant, a
low-friction “61A Bot” with 24/7 availability that offers feedback
on every run of an “autograder” that students use liberally to test
their code-in-progress. Our Bot constructs a GPT-4 request using
our custom prompt, homework question text, student code, and
autograder error output (where available), returning its response to
students. The prompt is itself designed to steer towards feedback
that mirrors howwe ourselves typically approach student questions,
aligned with recent work in this area [23]: identifying whether the
student understands the question, which concepts students might
need reinforcement on, and whether they have a plan, and then
helping students by providing conceptual, debugging, or planning
support as appropriate.

Then, we examine our Bot’s impact on our CS1 course—a large
(∼ 1000-student) Python-based course targeted at CS majors. Ulti-
mately, we ask: What impact does this deployment have on
our course, on students and on staff? First, we find that students
assess a majority of Bot-provided hints as being helpful, in line with
prior work. Second, through a retrospective observational study
aimed at quantifying impacts, we find that requests for homework
help to our course forum drop dramatically (75%) after our Bot is
deployed, and that students spend substantially less time complet-
ing their homework—25-50% less time, often more than 30 minutes
faster, a 4-8 standard deviation reduction from the mean completion
time for the same assignments in prior semesters.

We note that while these impacts do not necessarily imply im-
provements in student learning outcomes, speeding up homework
completion times without increasing learning could still be a posi-
tive outcome: the time saved on completing traditional assignments

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

Zamfirescu-Pereira, Qi, Hartmann, DeNero, Norouzi

could be harnessed by instructors to increase learning in other
ways. In our final section, we discuss some of the costs and poten-
tial benefits of deploying LLM-based assistance in CS1, exploring
possible learning impacts, reductions in the visibility of student
challenges to staff, and opportunities for future research.

Thus, our main contributions are:

(1) A rich description of our low-friction CS1 assistant and its
deployment in our course;

(2) Findings of students’ subjective experiences based on student
surveys over two semesters; and

(3) A retrospective, observational analysis of student homework
completion patterns, identifying quantitative impacts our bot
had on staff demand and students’ homework experiences.

2 Background & Related Work
Generative models such as ChatGPT,1 OpenAI Codex [4], Amazon
CodeWhisperer2, and GitHub Copilot3 offer promising opportuni-
ties for enriching the learning experience of students. These models
have already been leveraged by educators in different areas of Com-
puting education [8, 10, 11, 13], where they accelerate content gen-
eration and seem to be impacting the relevant skills students gain
in introductory CS courses. Researchers have studied LLMs in areas
such as generating code explanations [3, 16, 19, 22], providing per-
sonalized immediate feedback [2], enhancing programming error
messages [17, 36], generating discussion forum responses [20, 25],
and automatic creation of personalized programming exercises and
tutorials [31, 32, 38] to enhance the comprehensiveness of course
materials.

However, the integration of LLMs in CS1 instruction comes with
challenges. Students could become overly reliant on automation
(a concern at least as old as calculators [7]), potentially hindering
their development of critical problem-solving skills—though recent
work suggests these negative effects can be avoided, at least for
programming assistance [14]. Taken to an extreme, the resulting
absence of human interaction could have negative effects, alongside
other ethical concerns related to plagiarism and the responsible use
of LLM-generated code. To maximize the benefits of LLMs while
mitigating these challenges, a thoughtful and balanced approach to
their incorporation into CS1 courses is essential [9, 21, 24].

Through deployments of LLMs as intelligent tutors, students
can receive immediate, personalized support and guidance, which
would ideally foster a deeper understanding of coding concepts
and promote self-paced learning—just as with pre-LLM Intelligent
Tutoring Systems (see [6] for a review, and [35] for an example).
The ability of LLMs to generate tailored resources, such as new, per-
sonalized tutorials and newly-generated code examples, not only
expands the available learning materials but also accommodates
students’ varying learning preferences—though these generated
materials are not always better [27]. Educators should integrate
LLMs as complementary tools, striking a balance between automa-
tion and human interaction while emphasizing the development

1https://chat.openai.com/
2https://aws.amazon.com/codewhisperer/
3https://copilot.github.com/

of critical problem-solving skills and responsible coding practices,
ultimately serving students better in their CS education.

Researchers are also increasingly integrating LLM-based chat-
bots in courses [19, 37] and online educational websites [26] to
provide immediate personalized feedback, and in tools in support-
ing students’ development of programming skills [5, 12, 30]. These
include CodeHelp [18, 33] and CodeAid [15], two systems (and de-
ployments) that bear a number of similarities to our own—though
those systems enable students to ask questions, while ours (we
believe uniquely) integrates feedback directly into the tool students
already use to execute that code, and then builds on the student’s
history of prior assistant hints and code changes in response.

3 Design & Deployment
Our deployment focused on providing students help with home-
work problems in part to address frequent student feedback from
prior terms about long wait times for TA support for homework
problems. In particular, we chose to focus primarily on the kinds of
debugging assistance our staff are often asked for.

Three concerns—hallucinations, students sharing personal in-
formation with a third party, and the harms from an unmonitored
chat interaction—led us to deploy a one-shot “Get Help” interac-
tion mode without an opportunity for “chat” follow-up. This meant
that one valuable pedagogical tool—having students explain their
understanding of the problem—would remain out of reach in this
initial deployment.

Following a common tutoring pattern [23], we designed a prompt
that would try to assess student conceptual knowledge, based on the
provided code, and offer syntactical, logical, or even template-code
suggestions—but not solutions. This prompt explicitly includes a
sequence of questions to consider in response to the student code:

(1) Is the student missing conceptual knowledge?
(2) Is their current code on the right track?
(3) How close are they to a solution?
(4) Were they able to follow previous advice?
(5) Do they have a reasonable plan?

Though we avoided students explicitly writing natural language
“chat” messages to the bot, we did want some degree of continuity—
which we achieved by also including up to three prior (student code,
bot advice) exchanges, if available (enabling question 4).

In addition to the steps above, the prompt also includes a per-
problem instruction block, whichwe used for about 10% of problems,
and more general instructions such as Do not give the student
the answer or any code. and Limit your response to a
sentence or two at most.

3.1 Course Details & Deployment
Our course covers most of the typical CS1 content, plus a few
additional topics, and we report here on the CS1 portion of our
course. These modules are taught using Python, to a student pop-
ulation made up predominantly of CS majors and intended ma-
jors (50 ± 10% majors/intended), with substantial prior preparation
(80 ± 5% any prior CS course, including high school). These demo-
graphics are broadly consistent across the semesters we examine
historically in this report, and variations do not correlate with the
results described here. (Fall and Spring semester students do differ

https://chat.openai.com/
https://aws.amazon.com/codewhisperer/
https://copilot.github.com/

61A Bot Report: AI homework assistants in CS1

Figure 1: Screenshot of the “autograder” command-line in-
terface. Students run the autograder to test their code against
a test suite (1); if any test cases fail, they are asked if they
would like to receive Bot feedback, and then asked to assess
the hint (2).

demographically due to how course requirements are structured at
our institution, and so we treat those as separate populations for
this work.) In our course, content is typically introduced in lecture,
and then reinforced in three assignment types: first, “labs,” which
include a mixture of notional machine reinforcement (e.g., tracing,
“What would Python do?”) and traditional homework problems,
completed in small groups without access to 61A Bot. These are
followed by “homework,” which students complete individually
with access to 61A Bot. Finally, students complete “projects” that
bring together multiple concepts towards a single goal, over a few
weeks, again without access to 61A Bot. In addition, students were
prohibited by course policy from using ChatGPT or other similar
AI-based systems for help across all assignment types—but we do
not have the means to enforce this.

3.1.1 Using 61A Bot. Students primarily (93%) access our Bot through
an autograder4 in the command line which provides the result of
running the student’s code on a set of test cases; if any fail, the
student is then asked whether they would like to receive feedback
on their code from 61A Bot (see Figure 1). If they do, the autograder
collects the student’s code, any errors from executing test cases,
and constructs a request from these.

4OK Client, https://github.com/okpy/ok-client

Students using VS Code5 (our course does not prescribe a specific
editor) can install an extension to enable a “Get Help” button in
the toolbar. When activated, the extension collects students’ code,
makes a best guess of which homework problem the student is
working on (as several problems often appear in a single file), and
constructs a request.

In both cases, the collected code includes the student’s full as-
signment code file for that assignment, which includes code for
multiple questions. Requests thus include: our prompt, along with
any problem-specific notes; the text of the specific homework prob-
lem the student is requesting help for (typically one of 4-6 such
problems within the assignment); up to 3 pairs of prior-code/Bot-
response text (if the student has made prior requests); the student’s
current code (for all problems within the assignment); and, finally,
any error text from failed test cases. These requests are sent to a
server run by our instructional staff, which passes it to GPT-4 and
logs the request and GPT-4’s response for further analysis.

Students are informed when installing the software that, in us-
ing our assistant, all code they write will be sent to OpenAI via
Microsoft Azure6, and that they should not include any content in
their code files (e.g., comments) that they do not want to share.

3.1.2 Deployment Timeline. We piloted and continued develop-
ment on 61A Bot throughout the academic year 2023-2024. In Fall
2023, we deployed an initial pilot of 61A Bot to a section of 400
students. This was followed by a full-scale deployment in week 10
(after the CS1 portion of our course) for the approximately 1400
students across both sections of the course. In conjunction with the
wider deployment, we also enabled access through the autograder
tool students could already run from the command line to validate
their code against a set of test cases. In Spring 2024, all 900 enrolled
students had access to both modalities of the bot from the start of
the semester. Our qualitative analysis thus draws on both semesters,
while our quantitative analysis is focused on the full deployment in
Spring 2024 where we can more confidently compare like-for-like
with a full-term deployment and historically comparable student
populations.

4 Outcomes
Students’ adoption of 61A Bot was immediate, and usage exploded
once we integrated access into our autograder. In this section, we
detail usage patterns and changes in reliance on course staff, report
on student assessments of their experiences, and finally offer an
investigation of the possible impacts of 61A Bot on homework
completion times. Unless otherwise noted, statistical accounts in
this section come exclusively from Spring 2024, the semester in
which our fully-developed Bot was deployed for all students (see
§3.1.2 for deployment details).

4.1 Usage & Reliance on Staff
Usage patterns show that students are returning to 61A Bot mul-
tiple times as they engage in homework: across our pilot and full
deployment semesters, over 2000 students made a total of 105,689
requests of our bot. The median student in our full deployment

5Visual Studio Code, https://code.visualstudio.com
6https://ai.azure.com/

https://github.com/okpy/ok-client
https://code.visualstudio.com
https://ai.azure.com/

Zamfirescu-Pereira, Qi, Hartmann, DeNero, Norouzi

Fa22 Sp23 Fa23 Sp24

Students 1656 1169 1407 872
Questions 1853 2035 1823 1033
per 1000 students 1119 1741 1296 1185

HW Questions 234 402 177 77
per 1000 students 141 344 126 88

Table 1: Average number of forum questions, Fall 2022–
Spring 2024, for the CS1 portion of the class (Fall 2023 results
thus do not include the period of widespread deployment).

semester made 25 requests to our bot, rising to 80 requests for
the student at the 95th percentile. As expected, usage increases
as the assignment deadline nears and is concentrated in the late
afternoons and evenings—a pattern similar to the usage reported
in [15, 18]—with a peak request rate of 291 requests/hour.

This engagement correlates with a reduction in help requests on
our online discussion forum for students to receive asynchronous
help. There is a substantial (30%) decrease in the number of ques-
tions asked (scaled to total enrollment) throughout the semester
from Spring 2023 to Spring 2024, from 1741 to 1185 questions per
thousand students. The impact on homework-specific questions is
even larger, showing a 75% decrease from 344 homework questions
per thousand students in Spring ’23 to 88 in ’24—see Table 1. (We
include scaled question counts for Fall 2022 and Fall 2023 as data
points illustrating the level of consistency across semesters.)

4.2 Student Reception
Student feedback suggests that students also found the Bot helpful.
We solicited this feedback in twoways: First, we queried students for
their assessment of each individual hint, which we received for ap-
proximately 27% (7459/27419) of queries.7 Of these, 70% (5210/7459)
were rated as “helpful,” with 45% of those, 2368/5210, reporting that
the problem was now resolved. A further 10% (743/7459) were rated
as “not helpful, but made sense,” while the final 20% (1496/7459)
were rated as insensible, misleading, or wrong.

Second, we formally surveyed students on their usage and per-
ceptions of the Bot. In Fall 2023, we conducted a non-anonymous
survey at the end of the semester to which 49% (698/1407) of stu-
dents responded. Students were asked to rate how much they used
the bot and how helpful they found it on a scale from 1 to 5. As
expected, those who reported more usage also found it more helpful.

In Spring 2024, we conducted a non-anonymous survey at the
end of the semester, to which 89% (774/872) of students responded.
On a scale from 1 to 5, we asked students to rate their bot usage,
bot helpfulness, bot reliability, and overall satisfaction with the bot.
Finally, we asked them whether or not they recommend that the
bot be available to students in future semesters. The results from
these surveys can be found in Figure 2.

Note that these results include both our partial- (Fall 2023) and
full-deployment (Spring 2024) semesters; the Fall 2023 results thus
reflect usage only post-deployment. Additionally, these surveys
7These counts reflect queries from only those students who gave consent for their
data to be used for research, and only during the CS1 portion of our course.

Figure 2: 61A Bot Survey Results. Students were asked to
report on their usage and perceptions of Bot helpfulness and
reliability, as well as their overall satisfaction on a scale of
1-5, from least to most.

were non-anonymous to track individual participation (for ped-
agogical goals independent of this project); because of this non-
anonymity, however, we did not ask whether students relied on
ChatGPT or other prohibited (by course policy) methods of support,
reasoning that we were unlikely to be able to rely on such results.

In the Spring 2024 survey, we also asked two optional free-
response questions: What did students like the most and least about
learning with the bot? We include a representative response for
each here:

Most liked:
“What I loved about the bot is that it allowed me to get feedback
when I didn’t have access to a tutor. Accordingly, instead of banging
my head against the wall for hours, I was able to get feedback about
what I was doing wrong and correct the mistakes. For me personally,
I would have had a lot more success in this class if I would have
had access to the bot for labs. (Labs on average took me about 2
and a half hours to complete, and sometimes longer if I didn’t have
access to a tutor).”

Least liked:
“Sometimes the answers were slightly vague. Of course, the bot
can’t simply spit out the answer, but sometimes it was frustrating
how it would say ‘you’re on the right track, but there seems to be a
conceptual misunderstanding with __’ — the explanations for the
blank could be a bit jargon-filled and didn’t always directly help
me resolve the misunderstanding due to imprecise language.”

Students generally appreciated 61ABot’s accessibility, debugging
capabilities, and time savings. However, the hints were sometimes
too vague for the students to make changes, while other times,
the bot was too specific and gave away too much. Despite our
attempts to steer GPT-4 towards rephrasing and a broader diversity
of responses to repeat inputs, these incidents still occur.

4.3 Effects on Homework
To understand the effects of 61A Bot on students in our course, we
compare student performance from our semester of full deployment,
Spring 2024 (SP24), with performance from prior Spring semesters
(see §3.1), going back through Spring 2021 (SP21)—comprising a
total of 1,643,613 data points from 6,034 students. We chose this
method of analysis in large part because our IRB does not allow
differential access to tools in courses, and thus we could not run a
randomized control trial.

61A Bot Report: AI homework assistants in CS1

Though 61A Bot is available to students for homework assign-
ments, it is not available for lab assignments nor for projects (see
§3.1). To the extent that performance differences on homework
assignments between pre- and post-deployment semesters are in-
consistent with performance differences on lab assignments and
projects, some of this difference may be attributable to the use
of the Bot. Though course content is substantially similar across
the semesters we report on here, there is some variation in course
staff, individual lectures, and specific problems within labs and
homework assignments—where homework and lab problems have
changed more than trivially, we have omitted them from our com-
parisons, examining only those that are identical in nature and
sequencing within our course. (We confirm, too, that the specific
assignments we report on here are representative of the full set of
assignments, and we are aware of no other major changes in course
content, delivery, or staffing occurred during this time.)

4.3.1 Data & Analytical Method. Our course “autograder” records
every attempt a studentmakes to test their code, storing a “snapshot”
of student code on our instructional servers, along with a student
identifier and a timestamp; we use these to reconstruct a history
of student progress. Autograder use is unlimited, and students
typically revise their programs repeatedly until they are ready
to submit their final code. Nearly all students submit code that
successfully passes all test cases, so examining the final submitted
code artifact alone does not necessarily provide useful insight into
impacts. Thus the metric we consider here is time to completion,
rather than passing test cases or other measures of code quality.

We calculate an approximate total completion time by summing
the timestamp deltas between snapshots. To account for students
completing the homework across multiple sessions, we ignore time
deltas above a 60-minute threshold—a value chosen somewhat ar-
bitrarily, but we confirm that the results we report here are robust
to values in the range of 20 to 120 minutes.8 For clarity, we aggre-
gate individual repeated problems into “assignments,” e.g., “HW
1.” Occasionally, one assignment in a particular semester differs
sufficiently from other semesters that we omit it entirely.9

We then report the distribution of student assignment completion
times using Cumulative Distribution Function (CDF) plots for spe-
cific homework assignments, labs, and projects. This CDF can be
read as “What fraction of students (y-axis) complete the homework
in less than some number of minutes (x-axis)?”, capturing how
long students take to complete these assignments across the full
distribution of completion times.

4.3.2 Results. Our primary finding is that student completion
times on identical homework assignments are substantially faster
in our post-deployment semester, Spring 2024, compared to prior

8We also conducted an independent analysis looking only at snapshot counts rather
than summing time deltas. Those results were consistent with the findings we report
here, as expected from [28]; we report times here because we find the time metric to
be more straightforward to reason about.
9Like our choice of completion time vs. submission counts, we opted for this method
of aggregation because we found it to be the clearest presentation of the effects we
observed. We performed the analysis described in this section with individual problems
on their own, as well as by comparing individual semesters with their prior (Spring)
semesters and comparing across different subsets of problems and prior years; the
results we report here are robust to all of the variations we tried, including many
others that we do not report on here for space.

semesters (Figure 3a). This effect is not seen in the similar lab as-
signments where the bot is not available (Figure 3b); a smaller, but
still substantial, speedup is seen in projects (Figure 3c).

(a) HW assignments 1, 2, 3, and 5.

(b) Lab assignments 1, 2, 4, and 8.

(c) Projects 2 and 3.

Figure 3: CDFs of assignment completion times. Circles iden-
tify the 20, 40, 60, and 80th percentiles; differences can be read
by matching circle markers horizontally. E.g., for HW2, the
60th percentile time across SP21-SP23 is 34 minutes (SD=1.9
min); in SP24 this time is 21minutes, 7.3 SDs below themean.

Zamfirescu-Pereira, Qi, Hartmann, DeNero, Norouzi

The data indicate that the (Bot-available) homework completion
times in Spring 2024 are between 25%−50% faster among students in
the middle 20− 80% percentile of completion times. This represents
a reduction in time of 3 − 9 Standard Deviations (SD) compared
with completion times from prior Spring semesters, a large effect.

In contrast, no-Bot lab completion times fall within 1 SD of the
prior semesters’ mean for the first few labs. Most later labs lack
enough consistency across semesters for a robust comparison, but
lab 8 does offer a glimpse into one possible outcome: here, students
in Spring 2024 overall took several standard deviations more time
than the mean for students in prior semesters.

Meanwhile, the no-Bot project completion times fall somewhere
in between: Spring 2024 students completed these projects between
10% − 20% faster than the pre-deployment mean—a speedup about
half as large as the Bot-available homeworks.

5 Discussion
Overall, our findings are consistent with a causal link between the
availability of our bot and faster homework completion times. In
the context of our course (see §4.3.1), reduced completion times are
likely to be a result of students reaching a correct solution more
quickly, rather than stopping before reaching a correct solution,
or making other mistakes, as might be the case in domains where
assignments have a greater variety of possible outcomes.

Though we did not carefully examine (and don’t make claims
about) student learning outcomes here, we have reason to believe
that students are not performing dramatically worse after deploy-
ment. In particular, though student exam performance is sufficiently
inconsistent (due to dramatic exam coverage differences from term
to term) that we did not report on it here, it does not appear that
Spring 2024 students performed substantially worse than in prior
terms. Additionally, the differences in performance on assignments
where the Bot was not available (labs and projects) were much
smaller. We can’t say for certain, but we have not found much
evidence for a major decrease in outcomes.

If indeed this reduction in homework time results in little or no
learning loss, we can then ask: What implications does this have
for CS1 courses? Are there other costs unrelated to learning loss?
And what other benefits might accrue?

On the costs side, with most homework help requests going
through an LLM, our human TAs may struggle more to stay on top
of common challenges among students, leading to a looser feedback
loop. However, this challenge could be addressed with new tools
that help TAs aggregate over automated help requests—but now
with LLM-generated hints and student feedback on whether those
hints are helpful. That is, of course, assuming CS1 courses do not
elect to reduce staff in response.

Given the mode of access of 61A Bot, one likely change in stu-
dent learning is a reduction in the ability to read and comprehend
error traces. Now that our students have an easy way to get natural
language feedback on failed test cases, they are much less incen-
tivized to try to understand why a test case failed by reading the
trace.

On the benefits side, instructors could use this extra student time
to cover more material, such as effective debugging techniques or
reading stack traces. Or, students could continue to simply spend

less time on the course. Similarly, TAs could spend less time debug-
ging straightforward homework errors and more time focused on
other forms of support.

These factors all point to a need for more research to better
understand the actual costs and to inform decisions made in the
hope of realizing actual benefits beyond saved student and TA time.

5.1 Limitations & Threats to Validity
Differences in prior preparation could explain why students com-
plete homework more quickly in Spring 2024—but any such dif-
ferences would also have to explain the lack of a decrease in lab
completion times. In fact, the consistency in early lab completion
times over the 4 semesters we examined suggests that our student
populations do not differ significantly in prior ability.

Similarly, differences in course content delivery, staffing, struc-
ture, etc., would be expected to impact both labs and homeworks, as
lectures and discussion sections for given topics come before labs
and homeworks. To our knowledge, no additional homework sup-
port was provided in Spring 2024 beyond 61A Bot—no additional
hints or support unique to Spring 2024 were offered in lecture or
group sessions.

Finally, our study is entirely observational: we had limited levers
for randomization, and there could be uncontrolled causes for the
effects we observe—for example, it could be that students are us-
ing ChatGPT for their homework or projects anyway, despite the
prohibition on ChatGPT use and the availability of 61A Bot. Chat-
GPT was originally released in November 2022, but we observed
no similar effect in Spring 2023 compared with prior terms.

6 Conclusions
Our results suggest that 61A Bot reduces demands on staff and
helps students complete homework more quickly, with oversized
impacts for students who spent the most time on homework—a
benefit that might even disproportionately support goals towards
inclusion in CS. But, ideally, this type of scaffolding should recede
over time as learners become more confident [34]. 61A Bot has not
yet clearly achieved this goal.

Guidelines around the inclusion of AI-based course materials
and tools suggest that these should only be incorporated when
we have a good understanding that their benefits outweigh their
costs [1]. Yet even if the primary outcome of 61A Bot is limited to
a reduction in homework completion time with no other benefits,
we believe that 61A Bot clears this bar—but that further research
into improving outcomes and mitigating the costs we have started
to expose is critical and urgent.

Acknowledgments
This work was made possible by a few generous sources of support:
an Inclusion Research Award from Google, and support for 61A-
Bot’s use of Azure’s OpenAI API by Microsoft.

61A Bot Report: AI homework assistants in CS1

References
[1] Kavita Bala, Alex Colvin, Morten H. Christiansen, Allison Weiner Heine-

mann, Sarah Kreps, Lionel Levine, Christina Liang, David Mimno, Sasha
Rush, Deirdre Snyder, Wendy E. Tarlow, Felix Thoemmes, Rob Vanderlan, An-
drea Stevenson Won, Alan Zehnder, and Malte Ziewitz. 2023. Generative
Artificial Intelligence for Education and Pedagogy | Center for Teaching In-
novation. https://teaching.cornell.edu/generative-artificial-intelligence/cu-
committee-report-generative-artificial-intelligence-education

[2] Patrick Bassner, Eduard Frankford, and Stephan Krusche. 2024. Iris: An AI-
Driven Virtual Tutor for Computer Science Education. In Proceedings of the
2024 on Innovation and Technology in Computer Science Education V. 1 (Milan,
Italy) (ITiCSE 2024). Association for Computing Machinery, New York, NY, USA,
394–400. https://doi.org/10.1145/3649217.3653543

[3] Brett A Becker, Paul Denny, James Finnie-Ansley, Andrew Luxton-Reilly, James
Prather, and Eddie Antonio Santos. 2023. Programming Is Hard–Or at Least It
Used to Be: Educational Opportunities And Challenges of AI Code Generation.
(2023).

[4] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374 (2021).

[5] Bruno Pereira Cipriano and Pedro Alves. 2023. GPT-3 vs Object Oriented Pro-
gramming Assignments: An Experience Report. In Proceedings of the 2023 Con-
ference on Innovation and Technology in Computer Science Education V. 1. 61–67.

[6] Tyne Crow, Andrew Luxton-Reilly, and Burkhard Wuensche. 2018. Intelligent
tutoring systems for programming education: a systematic review. In Proceedings
of the 20th Australasian Computing Education Conference. 53–62.

[7] Franklin Demana and BK Waits. 2000. Calculators in mathematics teaching and
learning. Past, present, and future. In Learning Mathematics for a New Century
(2000), 51–66.

[8] Paul Denny, Brett A Becker, Juho Leinonen, and James Prather. 2023. Chat Over-
flow: Artificially Intelligent Models for Computing Education-renAIssance or
apocAIypse?. In Proceedings of the 2023 Conference on Innovation and Technology
in Computer Science Education V. 1. 3–4.

[9] Paul Denny, Stephen MacNeil, Jaromir Savelka, Leo Porter, and Andrew Luxton-
Reilly. 2024. Desirable Characteristics for AI Teaching Assistants in Programming
Education. In Proceedings of the 2024 on Innovation and Technology in Computer
Science Education V. 1 (Milan, Italy) (ITiCSE 2024). Association for Computing Ma-
chinery, New York, NY, USA, 408–414. https://doi.org/10.1145/3649217.3653574

[10] Paul Denny, James Prather, Brett A Becker, James Finnie-Ansley, Arto Hellas,
Juho Leinonen, Andrew Luxton-Reilly, Brent N Reeves, Eddie Antonio Santos,
and Sami Sarsa. 2023. Computing Education in the Era of Generative AI. arXiv
preprint arXiv:2306.02608 (2023).

[11] James Finnie-Ansley, Paul Denny, Brett A Becker, Andrew Luxton-Reilly, and
James Prather. 2022. The robots are coming: Exploring the implications of openai
codex on introductory programming. In Proceedings of the 24th Australasian
Computing Education Conference. 10–19.

[12] James Finnie-Ansley, Paul Denny, Andrew Luxton-Reilly, Eddie Antonio Santos,
James Prather, and Brett A Becker. 2023. My AI Wants to Know if This Will
Be on the Exam: Testing OpenAI’s Codex on CS2 Programming Exercises. In
Proceedings of the 25th Australasian Computing Education Conference. 97–104.

[13] Arto Hellas, Juho Leinonen, Sami Sarsa, Charles Koutcheme, Lilja Kujanpää,
and Juha Sorva. 2023. Exploring the Responses of Large Language Models to
Beginner Programmers’ Help Requests. In Proceedings of the 2023 ACMConference
on International Computing Education Research V.1.

[14] Majeed Kazemitabaar, Justin Chow, Carl Ka To Ma, Barbara J Ericson, David
Weintrop, and Tovi Grossman. 2023. Studying the effect of AI Code Generators
on Supporting Novice Learners in Introductory Programming. In Proceedings of
the 2023 CHI Conference on Human Factors in Computing Systems. 1–23.

[15] Majeed Kazemitabaar, Runlong Ye, Xiaoning Wang, Austin Zachary Henley,
Paul Denny, Michelle Craig, and Tovi Grossman. 2024. CodeAid: Evaluating a
Classroom Deployment of an LLM-based Programming Assistant that Balances
Student and Educator Needs. In Proceedings of the CHI Conference on Human
Factors in Computing Systems (CHI ’24).

[16] Juho Leinonen, Paul Denny, Stephen MacNeil, Sami Sarsa, Seth Bernstein, Joanne
Kim, Andrew Tran, and Arto Hellas. 2023. Comparing Code Explanations Created
by Students and Large Language Models. In Proceedings of the 2023 Conference
on Innovation and Technology in Computer Science Education V. 1. ACM, 124–130.

[17] Juho Leinonen, Arto Hellas, Sami Sarsa, Brent Reeves, Paul Denny, James Prather,
and Brett A Becker. 2023. Using Large LanguageModels to Enhance Programming
ErrorMessages. In Proceedings of the 54th ACM Technical Symposium on Computer
Science Education V. 1. ACM.

[18] Mark Liffiton, Brad Sheese, Jaromir Savelka, and Paul Denny. 2023. CodeHelp:
Using Large Language Models with Guardrails for Scalable Support in Program-
ming Classes. arXiv:2308.06921 [cs.CY]

[19] Rongxin Liu, Carter Zenke, Charlie Liu, Andrew Holmes, Patrick Thornton,
and David J. Malan. 2024. Teaching CS50 with AI: Leveraging Generative Ar-
tificial Intelligence in Computer Science Education. In Proceedings of the 55th
ACM Technical Symposium on Computer Science Education V. 1 (Portland, OR,
USA) (SIGCSE 2024). Association for Computing Machinery, New York, NY, USA,
750–756. https://doi.org/10.1145/3626252.3630938

[20] Rongxin Liu, Carter Zenke, Charlie Liu, Andrew Holmes, Patrick Thornton, and
David J. Malan. 2024. Teaching CS50 with AI: Leveraging Generative Artificial
Intelligence in Computer Science Education. In Proceedings of the 55th ACM
Technical Symposium on Computer Science Education V. 2 (Portland, OR, USA)
(SIGCSE 2024). Association for Computing Machinery, New York, NY, USA, 1927.

[21] Stephen MacNeil, Joanne Kim, Juho Leinonen, Paul Denny, Seth Bernstein,
Brett A Becker, Michel Wermelinger, Arto Hellas, Andrew Tran, Sami Sarsa,
et al. 2023. The Implications of Large Language Models for CS Teachers and
Students. In Proc. of the 54th ACM Technical Symposium on Computer Science
Education, Vol. 2.

[22] Stephen MacNeil, Andrew Tran, Arto Hellas, Joanne Kim, Sami Sarsa, Paul
Denny, Seth Bernstein, and Juho Leinonen. 2023. Experiences from using code
explanations generated by large language models in a web software development
e-book. In Proceedings of the 54th ACM Technical Symposium on Computer Science
Education V. 1. 931–937.

[23] Julia M Markel and Philip J Guo. 2021. Inside the mind of a CS undergraduate
TA: A firsthand account of undergraduate peer tutoring in computer labs. In
Proceedings of the 52nd ACM Technical Symposium on Computer Science Education.
502–508.

[24] Samim Mirhosseini, Austin Z Henley, and Chris Parnin. 2023. What is your
biggest pain point? an investigation of cs instructor obstacles, workarounds, and
desires. In Proceedings of the 54th ACM Technical Symposium on Computer Science
Education V. 1. 291–297.

[25] Chancharik Mitra, Mihran Miroyan, Rishi Jain, Vedant Kumud, Gireeja Ranade,
and Narges Norouzi. 2024. Elevating Learning Experiences: Leveraging Large
Language Models as Student-Facing Assistants in Discussion Forums. In Proceed-
ings of the 55th ACM Technical Symposium on Computer Science Education V. 2
(Portland, OR, USA) (SIGCSE 2024).

[26] Erik Ofgang. 2023. What is Khanmigo? The GPT-4 learning tool explained by
Sal Khan. Tech & Learn (2023).

[27] Zachary A Pardos and Shreya Bhandari. 2023. Learning gain differences be-
tween ChatGPT and human tutor generated algebra hints. arXiv preprint
arXiv:2302.06871 (2023).

[28] Chris Piech, Mehran Sahami, Daphne Koller, Steve Cooper, and Paulo Blikstein.
2012. Modeling how students learn to program. In Proceedings of the 43rd ACM
technical symposium on Computer Science Education. 153–160.

[29] James Prather, Juho Leinonen, Natalie Kiesler, Jamie Gorson Benario, Sam Lau,
Stephen MacNeil, Narges Norouzi, Simone Opel, Virginia Pettit, Leo Porter, et al.
2024. How Instructors Incorporate Generative AI into Teaching Computing.
In Proceedings of the 2024 on Innovation and Technology in Computer Science
Education V. 2. 771–772.

[30] James Prather, Brent N Reeves, Paul Denny, Brett A Becker, Juho Leinonen,
Andrew Luxton-Reilly, Garrett Powell, James Finnie-Ansley, and Eddie Antonio
Santos. 2023. " It’s Weird That it Knows What I Want": Usability and Interactions
with Copilot for Novice Programmers. arXiv preprint arXiv:2304.02491 (2023).

[31] Brent Reeves, Sami Sarsa, James Prather, Paul Denny, Brett A Becker, Arto
Hellas, Bailey Kimmel, Garrett Powell, and Juho Leinonen. 2023. Evaluating the
Performance of Code Generation Models for Solving Parsons Problems With
Small Prompt Variations. In Proceedings of the 2023 Conference on Innovation and
Technology in Computer Science Education V. 1. 299–305.

[32] Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. 2022. Automatic
generation of programming exercises and code explanations using large language
models. In Proceedings of the 2022 ACM Conference on International Computing
Education Research-Volume 1. 27–43.

[33] Brad Sheese, Mark Liffiton, Jaromir Savelka, and Paul Denny. 2024. Patterns
of Student Help-Seeking When Using a Large Language Model-Powered Pro-
gramming Assistant. In Proceedings of the 26th Australasian Computing Education
Conference. 49–57.

[34] Elliot Soloway, Mark Guzdial, and Kenneth E. Hay. 1994. Learner-centered design:
the challenge for HCI in the 21st century. Interactions 1 (1994), 36–48.

[35] Ryo Suzuki, Gustavo Soares, Andrew Head, Elena Glassman, Ruan Reis, Melina
Mongiovi, Loris D’Antoni, and Bjoern Hartmann. 2017. Tracediff: Debugging
unexpected code behavior using trace divergences. In 2017 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC). IEEE, 107–115.

[36] SierraWang, JohnMitchell, and Chris Piech. 2024. A Large Scale RCT on Effective
Error Messages in CS1. In Proceedings of the 55th ACM Technical Symposium on
Computer Science Education V. 1 (Portland, OR, USA) (SIGCSE 2024). 1395–1401.

[37] Yu-Chieh Wu, Andrew Petersen, and Lisa Zhang. 2022. Student Reactions to
Bots on Course Q&A Platform. In Proceedings of the 27th ACM Conference on on
Innovation and Technology in Computer Science Education Vol. 2. 621–621.

https://teaching.cornell.edu/generative-artificial-intelligence/cu-committee-report-generative-artificial-intelligence-education
https://teaching.cornell.edu/generative-artificial-intelligence/cu-committee-report-generative-artificial-intelligence-education
https://doi.org/10.1145/3649217.3653543
https://doi.org/10.1145/3649217.3653574
https://arxiv.org/abs/2308.06921
https://doi.org/10.1145/3626252.3630938

Zamfirescu-Pereira, Qi, Hartmann, DeNero, Norouzi

[38] Zhiqiang Yuan, Junwei Liu, Qiancheng Zi, Mingwei Liu, Xin Peng, and Yiling
Lou. 2023. Evaluating instruction-tuned large language models on code compre-
hension and generation. arXiv preprint arXiv:2308.01240 (2023).

	Abstract
	1 Introduction
	2 Background & Related Work
	3 Design & Deployment
	3.1 Course Details & Deployment

	4 Outcomes
	4.1 Usage & Reliance on Staff
	4.2 Student Reception
	4.3 Effects on Homework

	5 Discussion
	5.1 Limitations & Threats to Validity

	6 Conclusions
	Acknowledgments
	References

